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ABSTRACT:

Advanced geospatial  applications often involve complex computing  operations performed under sometimes severe resource 
constraints.  These applications primarily rely on traditional raster and vector data structures based on square lattices. But there is 
a significant body of research that indicates  that data structures based on hexagonal  lattices may be a superior alternative for 
efficient representation and processing of raster and vector data in high performance applications. The advantages of hexagonal 
rasters for image processing are discussed, and hexagonal discrete global grid systems for location coding are introduced. The 
combination provides an efficient, unified approach to location representation and processing in geospatial systems.

1.  MOTIVATION

Advanced geospatial applications, such as mobile mapping, 
often perform complex spatial operations on potentially large 
data sets, with strict controls on the accuracy of internal 
location representations, and in computing environments that 
may be severely constrained by resource and size limitations. 
These systems therefore often place a premium on 
representational and algorithmic efficiency, and are in a 
constant state of improvement as more efficient 
representations and algorithms become available. Among the 
most fundamental data structures are those used for the 
representation and  storage of raster image data and vector 
geospatial location data. Because they are so pervasive, even 
small improvements in efficiency  or representational 
accuracy in these data structures can result in substantial 
performance increases in an overall system. 

Data structures for the representation and storage of raster 
and vector data in geospatial applications have traditionally 
been built on substrates  of square lattices. The common 
standards have long been raster grids of square pixels and 
vector coordinates consisting of 2- or 3-tuples  of floating 
point values.

Yet  if the goal is optimal  representational and algorithmic 
efficiency and superior semantic expressiveness, then  data 
structures based on squares are likely not the best choice. 
There is a substantial body of research that indicates that 
representations based on hexagonal lattices are superior, and 
such research has arrived at this conclusion  consistently 
across a number of research areas that  directly apply to 
geospatial systems, such as photogrammetry, image 
processing, and geospatial location coding. Research in 
hexagonal image processing and pattern recognition has been 
on-going for over 40 years, and  has recently seen a sharp 
increase (Middleton 2005). At the same time, decades of 
research in hexagon-based location  coding has culminated in 
the development of hexagonal discrete global grid systems 
(Sahr et al., 2003): multi-resolution, hierarchically indexed 
location systems that seamlessly tile the globe.

In this paper I will  survey the advantages of hexagon-based 

raster and vector data structures, as well as those factors  that 
have so far inhibited more widespread adoption of hexagon-
based representations for geospatial applications. 

2.  HEXAGONAL IMAGE PROCESSING

As a basis for photogrammetry and general  image 
processing, it is not an exaggeration to state that raster grids 
consisting of hexagonal pixels, arranged in a hexagonal 
topology, are superior to those based on square pixels of 
equivalent frequency under virtually every efficiency and 
geometric metric. Hexagon rasters are 13.4% more efficient 
at sampling circularly bandlimited signals (Petersen & 
Middleton, 1962), and processing algorithms on hexagon 
rasters  are 25-50% more efficient (Mersereau, 1979). 
Staunton (1989) implemented a set of edge detection 
operators on a hexagonal raster and  realized over 40% better 
performance compared to equivalent operators on square 
grids.

These efficiencies are closely tied to the unique geometric 
attributes of a hexagonal lattice. Hexagons have the highest 
symmetry and are the most circular of all regular polygons 
that tile the plane (Yale, 1968). Davies (1984) noted that 
operators defined on square rasters may be dominated by 
preferred horizontal and vertical directions, leading to 
anisotropy in the operators’  spectral  properties, and argued 
instead for isotropic hexagon raster operators that exhibit 
“circularity” (see also Coleman et al., 2004; Scotney & 
Coleman, 2007). Hexagon lattices have uniform and 
unambiguous connectivity, with each pixel having six 
neighbors with  which it  shares an edge, and whose centers 
are equidistant from its center. In contrast, a pixel in a square 
lattice has  two types of neighbors: four pixels  with which it 
shares an edge, and four pixels with which it shares a vertex, 
and the centers of the two types of neighbors  are different 
distances from the central pixel. This fact alone leads to 
semantic paradoxes when dealing with boundaries  on square 
lattices (Rosenfeld, 1970). The increased number of pixels in 
n-order neighborhoods on a hexagon raster allows for greater 
angular resolution (Golay, 1969). These neighborhoods are 
more circular than corresponding n-order neighborhoods on a 
square raster, making the discrete distance metric on a 
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hexagon lattice a better approximation to cartesian distance 
(Luczak & Rosenfeld, 1976). And in addition to the 
advantages listed above, hexagonal  rasters have long been of 
specific interest  to researchers in machine vision because 
they match the hexagonal arrangement  in the photoreceptor 
mosaic of the human eye (Roorda, 2001). 

These advantages have motivated significant algorithm 
development on hexagon rasters. Examples of hexagon raster 
algorithms that  are potentially useful in geospatial 
applications include computing metric distance (Luczak & 
Rosenfeld, 1976), adapted Bresenham’s line and circle 
rasterization (Wuthrich  & Stucki, 1991), edge detection 
(Staunton, 1989; Abu-Bakar & Green, 1996; Middleton & 
Sivaswamy, 2001; He et al., 2008), determining line-of-sight 
and field-of-view (Verbrugge, 1997), parallel  pattern 
transformations (Golay, 1969), image gradient operators 
(Snyder et al., 1999; Gardiner et al., 2009; Shima et al, 
2009),  image alignment (Shima et al., 2010), surface area 
estimation (Miller, 1999), texture characterization 
(Middleton, 2002), feature extraction (Laine et  al., 1993; 
Gardiner et  al., 2008; Coleman et  al., 2009),  perfect 
reconstruction filter banks (Allen, 2005), discrete Fourier 
transform (Mersereau, 1979;   Grigoryan, 2002; Middleton & 
Sivaswamy, 2005;  Vince & Zheng, 2007),  array grammars 
for picture languages (Siromoney & Siromoney, 1976; 
Subramanian, 1979; Dersanambika et al., 2005), and the 
computation of ranklets  (Smeraldi  & Rob, 2003), Euler 
numbers (Sossa-Azuela et  al., 2010), and wavelets (Jiang, 
2009; Veni et al., 2011). Applications have included license 
plate recognition (He et al., 2008), reconstructing cardiac 
movement from medical imaging (He et al., 2006), and 3D 
reconstruction (Jiang et al., 2010).

Despite the significant advantages  of hexagonal rasters, there 
is  one very important factor that  has  hindered their adoption 
in  image processing applications: the fact  that physical 
sensor and display devices based on hexagonal  grids are not 
currently commercially available. Custom hexagonal sensor 
arrangements have been used in research and in specific 
applications, including a CMOS motion detector (Delbrueck, 
1993), a prototype CMOS sensor with analog spatial 
convolutions for edge detection (Tremblay et al., 1993), an 
integrated CMOS image acquisition system (Hauschild et al., 
1996), an interferometer array for exoplanet detection 
(Guyon & Roddier, 2002), and a machine vision system 
consisting of a hexagonal raster of photoreceptors on a 
curved surface (Riley  et  al., 2008). Additionally, a number of 
projects in high energy particle physics have employed 
hexagonal rasters; these include a time projection 
spectrometer (Anderson, 1979) and silicon drift detector 
(Iwanczyk et al., 1999) with hexagonal  CCD matrices, and a 
CMOS sensor array for vertex detection in  linear colliders 
with  a new 3-way signal routing scheme that eliminates 
ghosting  (Hoedlmoser et  al., 2009). I can only speculate on 
when sensor and display devices based on hexagonal rasters 
will  become more widely available. However, given the 
numerous significant advantages  of such devices it  is likely 
that their use will continue to grow.

The dearth of hexagonal sensor and display devices has  led 
to  a proliferation of algorithms for resampling between 
square and hexagon rasters (see the comprehensive survey 
and comparison in Gardiner et  al., 2010), and of algorithms 

for the efficient display of hexagon rasters on square raster-
based display devices (see the survey in Middleton, 2005). 
This allows data acquisition and display to be performed 
using hardware based on traditional square rasters, while 
allowing internal processing of the data to be performed 
using a hexagon raster with relatively little loss of accuracy 
and efficiency, making the advantages of hexagonal  raster 
algorithms available today for use in geospatial computing.

3.  OPTIMAL VECTOR REPRESENTATION

In geospatial applications vector locations are most  often 
represented as a 2- or 3-tuple of floating point  values, most 
commonly representing either polar (latitude/longitude) 
coordinates or cartesian coordinates defined in some planar 
map projection space. Operations on  these tuples are usually 
defined so as to mimic the corresponding operations on 
tuples of real numbers. While undoubtedly useful, this 
approach masks the reality that  any representation of real 
numbers on a digital computer is  necessarily finite and 
discrete, while the real number plane itself is infinite in 
extension, continuous, and infinitely divisible. Consequently, 
performing even the most fundamental  operations on  these 
representations has the potential to introduce and/or 
propagate rounding error. For example, two floating-point 
tuples are usually considered “equal” if the distance between 
them is less than some relatively small number. This makes it 
impossible to distinguish between two addresses which 
represent point locations that are distinct, yet very close, and 
two addresses which are intended to indicate the same 
location but which differ due to rounding error. In  geospatial 
applications the result  of a location equality test may well 
have significant semantic implications; it  might, for instance, 
be an important decision point in determining the 
application’s future execution path. And while it is  often 
possible to bound the rounding error due to a single 
calculation or even an entire single application execution, 
complex geospatial computing applications often involve 
interactions between multiple programs and data sets. In such 
situations it  can be very difficult, if not impossible, to  bound 
the cumulative round-off error present in  the final  system 
results, which may themselves serve as inputs into additional 
geospatial processing.

Vector location representations based on floating-point tuples 
are no more “exact” than explicitly discrete raster integer 
coordinates; in both cases the infinite number of point 
locations on the earth’s surface are mapped to a finite number 
of location addresses, each of which forms an equivalence 
class with respect to geospatial location. The question of the 
optimal arrangement  of these fixed points can be framed as a 
point quantization problem on the real number plane. Given 
an application with n-bit  location representations we can 
represent at most 2n fixed points. All other points are 
represented by mapping them to the nearest of these fixed 
points. There are multiple formulations for comparing 
arrangements of these fixed points. We can determine which 
arrangement has the smallest average quantization error. Or 
we can treat each fixed point as the center of a circular region 
and find the arrangement which covers the plane with the 
least overlap, or the arrangement with no overlap  but with  the 
least uncovered area. The provably optimal solution to all of 
these formulations  is to arrange the fixed points  as the center 
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points  of a hexagonal  lattice (Rogers, 1964; Conway & 
Sloane, 2010).

Given an optimal hexagonal lattice representation  of raster or 
vector location, we next turn our attention to  the problem of 
efficiently assigning addresses to these locations. 

4.  INDEXING HEXAGONAL GRIDS

In contrast to the two orthogonal axes  of square-lattice based 
coordinate systems, hexagon lattices have three natural axes 
spaced 120° apart, as illustrated in Figure 1. Any two of these 
axes are sufficient to uniquely identify each hexagon using a 
2-tuple of integers. 

It is often useful to assign to each hexagon a linear code or 
index. The most useful indexes are hierarchical prefix codes, 
where the cell  being indexed is considered to be at  a specific 
resolution in a multi-resolution structure, and each digit in 
the index corresponds to a location at a single resolution 
relative to a hierarchical parent’s index. Such an indexing 
implicitly defines both a locality-preserving  total ordering  of 
the pixels and a pyramid data structure, and enables the 
development of efficient hierarchical algorithms. The 
canonical example of a hierarchical prefix code is the square 
quadtree (Gargantini, 1982), where a square is  recursively 
sub-divided into  4  smaller squares, each of which is assigned 
an index consisting of the parent square’s index concatenated 
with  one of the digits 1, 2, 3, or 4. Hierarchical prefix 
location codes naturally encode both direction and precision, 
without the need for metadata, and provide an implicit 
algorithm for feature generalization through address 
truncation (Dutton, 1999). 

     
Figure 1.  Natural hexagonal axes.

While a square quadtree can  be formed equivalently via top-
down recursive partitioning or bottom-up aggregation of 
squares into  larger squares, it  is  impossible to exactly 
partition a hexagon into smaller hexagons or to aggregate 
smaller hexagons to form a larger hexagon. The pixels in a 
hexagonal raster can be aggregated into groups that  tile the 
plane, with the centroids of these aggregates forming the 
nodes of a new hexagonal grid to which the aggregation 
scheme can be applied recursively. Groups of 3, 4, or 7  are 
considered the most  useful; the number of pixels in an 
aggregate is referred to as the aperture of the hierarchy. 
Examples are given in Figure 2. A unique hierarchical  prefix 
code index can then be assigned to each pixel  by beginning 
with  the coarsest aggregates and traversing the aggregation 
tree down to  the individual  pixels, consistently assigning 
digits at each level, with the digit  base traditionally 
determined by  the aperture (Burt, 1980; Bell & Holroyd, 
1991). An arithmetic can be defined on these indexes using 

using very efficient  per-digit table lookups (Bell & Holroyd, 
1991).

! Figure 2. Example recursive aggregation units with 
apertures 3, 4, and 7 respectively.

Aperture 7 aggregation best approximates a hexagonal  shape 
and has  therefore received the most attention. The most 
widely-used digit assignment  for each aperture 7 unit is 
Generalized Balanced Ternary (GBT) (Gibson & Lucas, 
1982) (an alternate aperture 7 digit assignment is  given in the 
spiral addressing of Middleton & Sivaswamy, 2005). GBT is 
a generalization of one-dimensional  Balanced Ternary 
addressing (Knuth, 1998), which uses three-valued digits that 
represent -1, 0, or 1. As illustrated in Figure 3, GBT 
generalizes this notation to the three axes of a hexagon grid. 
In any  seven-hex unit the central  hex is  designated  digit  0. 
The digits  1 through 6 are arranged so that, if the digits  are 
stored as 3-bit binary values, digits on opposite sides of the 
central hex are binary complements of each other, allowing 
negation to be performed efficiently using the binary 
complement operation. Depending upon the application, the 
remaining unused  possibility per 3-bit  digit, base-10 digit 7, 
can be used to  represent the aggregate group of seven child 
cells associated with the indexed cell (Gibson & Lucas, 
1982), to efficiently indicate address termination in a variable 
length index, or to indicate that all higher resolution digits 
are zero, efficiently communicating with a finite number of 
digits  that  the index exactly represents the center point of the 
cell with infinite precision (Sahr, 2008). Common vector 
operations, such as addition and scaling, have been defined 
on GBT using very efficient per-digit table lookups.

Figure 3. GBT digit assignment.

The nodes of these aggregation hierarchies can equivalently 
be viewed top-down as a multi-resolution series  of hexagonal 
grids, as illustrated in Figure 4. Relative to the next  coarser 
resolution grid, the cells at each finer resolution of an 
aperture a  grid have 1/a the area and an inter-cell spacing a 
factor of 1/√a smaller.
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Figure 4. Multi-resolution hexagonal grids of aperture 
3, 4, and 7 respectively.

The top-down approach to  hexagonal hierarchies can be 
traced to Christaller (1966), who argued that ideal human 
settlement patterns form mixed aperture 3, 4, and  7 
hierarchies; Woldenberg (1979) argues that this is also true of 
naturally occurring branching structures such as rivers. 
Dacey (1965) gave a mathematical formulation of these 
hierarchies as a multi-resolution series of lattices. White et al. 
(1992) developed a computer program that generates mixed 
hexagon hierarchies on a hexagonal  face of a truncated 
icosahedron and then inversely projects these hexagons to  the 
surface of the earth, indexing the cells as per the aggregation 
approaches described above. Anchoring the hierarchy to  the 
earth’s surface in this way fixes the size of the coarsest grid 
resolution (unlike the traditional raster case where the grid 
sizes are determined by the size of the finest resolution 
pixels); thus mixed aperture hierarchies provide finer control 
over the choice of grid cell size and spacing.

Aggregation-based indexing works well for hierarchically 
indexing a single resolution raster, but  it  does not provide a 
true multi-resolution encoding for vector locations (Sahr, 
2008). In aperture 3 and 4 grids many cells overlap more 
than one cell  at the next coarser resolution (see Figure 4), and 
each particular aggregation scheme arbitrarily  chooses one of 
those coarser cells as the indexing parent. So while 
truncating the index of a cell will  yield a valid cell  index at a 
coarser grid resolution, that coarser cell is not necessarily the 
correct quantification of the vector location at that resolution. 
This also means  that we cannot perform a coarse filter 
equality comparison by using the highest order digits of two 
indexes. Note that this  is  also true of addresses  in a 
traditional  decimal  number system representation. For 
example, the one-digit truncation of decimal value 1.9 is 1, 
while the discrete unit quantization of that value is 2. 

Note that the cells that are potentially the aperture 3 or 4 
indexing children of a particular cell form a 7-hex unit, just 
as in  the aperture 7 case. We can therefore apply the GBT 
indexing arrangement to create a uniform indexing scheme 
for pure and mixed aperture hierarchies which I call central 
place indexing  (CPI) (Sahr, 2010). For vector locations, such 
indexes encode a true multi-resolution quantization with sub-
pixel accuracy (see Figure 5). They also provide a uniform 
addressing system for aggregation schemes involving one or 
more tiling units (e.g., Sahr, 2008). CPI allows optimal 
control of resolution while maintaining the efficient binary 
encoding and integer arithmetic approach of GBT.

Figure 5. Multi-resolution quantization with sub-pixel 
accuracy on an aperture 3 CPI hierarchy.

5.  DISCRETE GLOBAL GRID SYSTEMS

Multi-resolution hexagonal grids have been defined on the 
surface of regular polyhedra, such as the icosahedron, and 
then projected onto the sphere to create multi-resolution 
raster and vector geospatial data structures that  are global in 
extent without singularities. These systems are known as 
discrete global grid systems (DGGSs) (Sahr et al., 2003); 
figure 6 illustrates an example. Note that it is impossible to 
tile the globe with hexagons; for example, if the base 
polyhedron is  an icosahedron then there will be exactly 
twelve pentagonal cells, centered on the icosahedron vertices, 
at all resolutions.  

Figure 6. Three resolutions of an aperture 3 hexagonal 
DGGS defined on an icosahedron.

The author has  developed a software program called 
DGGRID (Sahr, 2002) for generating aperture 3 and 4 
hexagonal DGGSs  with pyramid indexing that has been used 
in  research and data set production (e.g., Suess et al., 2004; 
Cressie & Johannesson, 2008; Hoffmann et al., 2010). 
DGGSs using hierarchical  aggregation indexing schemes 
have been proposed for both apertures 3 and 4 (White, 2000; 
Sahr, 2008; Vince, 2009; Tong et al., 2010). CPI has also 
been extended to the sphere (Sahr, 2010) to provide a 
uniform indexing for pure and mixed aperture DGGSs, and a 
CPI grid has been designed and implemented to meet  the 
narrow inter-cell spacing requirements of the U.S. 
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Environmental  Protection Agency Emergency Response 
Atlas project (Sahr & White, 2010). 

5.  CONCLUSIONS

In this paper I attempted to demonstrate that raster and vector 
data structures based on hexagonal lattices offer significant 
advantages over those based on square lattices. Hexagonal 
lattices are now definable on multiple scales, from the entire 
globe down to individual sensor arrays, providing an efficient 
unified approach to location representation for geospatial 
computing applications. The primary obstacles to their 
adoption have been the lack of commercially available sensor 
and display  devices, and the inertia created by the long 
history of widespread use of square-based location 
representations, with the convenience and familiarity that 
engenders. Since no technical limitations now exist I believe 
that it is only a matter of time before hexagonal raster and 
vector representations become more widely adopted.
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